بررسی فناوری‌های نوین بوم‌سازگار در کشاورزی و منابع طبیعی در ایران.

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو پیوسته فرهنگستان علوم جمهوری اسلامی ایران و استاد دانشگاه تهران

2 دانشیار گروه اگرواکولوژی، پژوهشکده علوم محیطی، دانشگاه شهید بهشتی، تهران، ایران

چکیده

بهره‌گیری از فناوری‌های نوین و بوم‌سازگار نقشی کلیدی در افزایش بهره‌وری تولید، کاهش خسارت­ها و بهینه‌سازی مدیریت زنجیره ارزش محصول­های کشاورزی دارد. امروزه ورود فناوری‌های نوین و ارتقای روش‌های گذشته به ویژه با رشد سریع فناوری اطلاعات، از جمله موتورهای جست­و­جوگر، هوش مصنوعی، شبکه‌های اجتماعی، آموزش از راه دور، رایانش ابری، اینترنت اشیاء و رشد دیگر فناوری‌های شبکه ‌پایه موجب آسان شدن ایجاد سامانه‌های برهمکنش‌گر و اشتراک اطلاعات شده است. این فناوری­ها شرایط ورود به دروازه‌های جدیدی را برای مدیریت کارامد بخش کشاورزی گشوده است. دشواری‌های مهم ورود و توسعه فناوری‌های نوین در بخش کشاورزی ایران شامل جنبه­های اقتصادی (مانند هزینه بالای سرمایه‌گذاری و تامین فناوری‌های نوین و نیروی‌کار حرفه‌ای)، زیرساختی (نبود بسترهای مناسب بهره­گیری از فناوری‌های نوین، نبود پیوستگی بین حلقه‌های زنجیره بخش کشاورزی) و  اجتماعی و فرهنگی (کم بودن سطح سواد رسانه­ای، ساختار سنتی و معیشتی جامعه کشاورزی و  تغییر سبک زندگی) است. بنابراین، راهبرد بنیادی برای بومی‌سازی فناوری‌های نوین عبارتنداز: آموزش استفاده از فناوری‌های نوین به کشاورزان، شناسایی و بررسی چالش‌ها و نیازهای واقعی پیش­ روی کشاورزان و بازیگران اصلی زنجیره کشاورزی از مزرعه تا سفره، ایجاد مزرعه‌های پژوهشی، ایجاد بسترها و زیرساخت‌های لازم برای ورود و بومی‌سازی فناوری‌های نوین.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Modern Eco-based Technologies Application in the Agriculture and Natural Resource Management of Iran

نویسندگان [English]

  • A. Sharifi 1
  • ABDOLMAJID MAHDAVI DAMGHANI 2
1 Fellow of I.R. Academy of Sciences and Professor of Tehran University
2
چکیده [English]

        Applying modern, eco-based and updated technologies has a key role in improving productivity, minimization of losses, as well as optimization of agricultural value chain management. Introduction of modern technologies, including IT, IoT, Artificial Intelligence, social networks, virtual education, and cloud computing facilitate science and information partitioning. The main constraints for introduction and application of these technologies in agriculture and natural resources sector in Iran include economic (high investment, provision and professional labor cost), infrastructural (lack of suitable platforms, weak interconnectedness between different parts of agricultural sector chain) and socio-cultural (low education, traditional and subsistence structure of agriculture in Iran and farmers lifestyle) factors. Results of present study shows that determining farmers and other stakeholders’ challenges for applying modern technologies, developing pilot farms and providing necessary structures are main strategies to promote and indigenize these technologies in agriculture and natural resources sector in Iran.

کلیدواژه‌ها [English]

  • Information technology
  • Indigenization
  • Internet of things
  • Value chain
  1. امیدوار، محمود؛ شفایی، اردشیر. (1383). بررسی رفتار حرارتی و رطوبتی داخل گلخانه به کمک یک سیستم جمع‌آوری اطلاعات کامپیوتری. پژوهش و سازندگی در زراعت و باغبانی، 64، 67-73.

    امیری، محمد؛ بهمنش، مهسا. (1389). تأثیر فناوری نانو بر جوامع در حال توسعه با نگرش ویژه به ایران. چهارمین کنفرانس مدیریت فناوری ایران، تهران: 1-9.

    صدفکردار، عباس؛ رمضانی، عبدالمجید؛ عباسی، حیدر. (1394). کاربرد انرژی هسته ای در صنعت کشاورزی. سومین همایش سراسری محیط زیست، انرژی و پدافند زیستی، تهران.

    کامکار، بهنام؛ مهدوی دامغانی، علی. (1387). مبانی کشاورزی پایدار. انتشارات جهاد دانشگاهی مشهد.

    Al-Hchami, S. H. J., & Alrawi, T.K., (2020). Nano fertilizer, benefits and effects on fruit trees: a review. Plant Archives, 20(1), 1085-1088.

    Arab, M. M., Marrano, A., Abdollahi-Arpanahi, R., Leslie, C. A., Askari, H., Neale, D. B., & Vahdati, K. (2019). Genome-wide patterns of population structure and association mapping of nut-related traits in Persian walnut populations from Iran using the Axiom J. regia 700K SNP array. Scientific reports, 9(1), 1-14.

    Dalla Costa, L., Malnoy, M., & Gribaudo, I., (2017). Breeding next generation tree fruits: technical and legal challenges. Horticulture Research, 4(1), 1-11.

    Deng, L., Lyu, Q., & Yang, S. X., 2015. Intelligent information technologies in fruit industry. Intelligent Automation & Soft Computing, 21(3), 265-267.

    Fernandes, A. F. A., Dórea, J. R. R., & Rosa, G. J. M. (2020) Image Analysis and Computer Vision Applications in Animal Sciences: An Overview. Front. Veterinary Sciences, 7:551269. doi: 10.3389/fvets.2020.551269.

    Groher, T., Heitkämper, K., Walter, A., Liebisch, F., & Umstätter, C. (2020). Status quo of adoption of precision agriculture enabling technologies in Swiss plant production. Precision Agriculture, 21(6), 1327-1350.

    Hemming, S.,  de Zwart, F.,  Elings, A., & Petropoulou, A. S. (2019). Remote Control of Greenhouse Vegetable Production with Artificial Intelligence—Greenhouse Climate, Irrigation, and Crop Production. Sensors, 19(8), 1807.

    Hemming, S., de Zwart, F., Elings, A.,  & Righini, I. (2020). Cherry Tomato Production in Intelligent Greenhouses—Sensors and AI for Control of Climate, Irrigation, Crop Yield, and Quality. Sensors, 19(8), 1807.

    Homer, I., García-Ramos, F. J., Ortiz-Cañavate, J., & Ruiz-Altisent, M. (2010). Evaluation of a Non-Destructive Impact Sensor to Determine On-Line Fruit Firmness. Chilean Journal of Agricultural Research, 70(1), 67–74.

    Huang, A. (2021). Transforming the Agricultural Industry; IBM: New York, NY, USA. Retrieved from https://www.ibm.com/blogs/internet-of-things/agricultural-industry/i.

    Jia, W., Zhang, Y., Lian, J., Zheng, Y., Zhao, D., & Li, C., (2020). Apple harvesting robot under information technology: A review. International Journal of Advanced Robotic Systems, 17(3), 1-16.

    Ku, L. (2020). New agriculture technology in modern farming. Retrieved from https://www.plugandplaytechcenter.com/resources/new-agriculture-technology-modern-farming/.

    Meuwissen, T., Hayes, B., & Goddard, M. (2016). Genomic selection: A paradigm shift in animal breeding, Animal Frontiers, 6(1), 6–14.

    Mohan Jain, S. (2002). A review of induction of mutations in fruits of tropical and subtropical regions. Acta Horticulturae, 575, 295-302.

    Pretty, J., Sutherland, W. J., Ashby, J., Auburn, J., Baulcombe, D., et al. (2010). The top 100 questions of importance to the future of global agriculture, International Journal of Agricultural Sustainability, 8:4, 219-236, DOI: 10.3763/ijas.2010.0534

    REN21. 2021.Renewables (2021) Global Status Report (Paris: REN21 Secretariat). ISBN 978-3-948393-03-8.

    Rinskje, K. (2021) Dacom and Crop-R Join Forces under Dacom Farm Intelligence, Dacom, Emmen, Nederland. Retrieved from https://en.dacom.nl/news/dacom-and-crop-r-join-forces.

    1. (2018). The State of World Population 2018. United Nation Population Fund, pp. 19-21.

    Van Eenennaam, A. L., Figueiredo, D., Silva, F., Trott J. F., & Zilberman, D. (2021). Genetic Engineering of Livestock: The Opportunity Cost of Regulatory Delay. Annual Review of Animal Biosciences, 16(9), 453-478. doi: 10.1146/annurev-animal-061220-023052. Epub 2020 Nov 13. PMID: 33186503.

    World Government Summit (WGS). (2022). Arab Region SDG Index and Dashboard Report. Sustainable development solutions network.

    Zhijun, W., Yuefeng, L., Meng, J., Shuhan, C., & Yucun, W. (2015). Research on image retrieval of fruit tree plant-diseases and pests based on Nprod. Intelligent Automation and Soft Computing, 21(3), 371-381.